Sains Malaysiana 53(9)(2024): 3031-3044
http://doi.org/10.17576/jsm-2024-5309-10
Exploring the Protease
Diversity of Psychrophilic Yeast, Glaciozyma antarctica through Genome Mining Analysis
(Meneroka Kepelbagaian Protease Yis Psikrofili, Glaciozyma antarctica melalui Analisis Perlombongan Genom)
NORFARHAN
MOHD-ASSAAD1, ROHAIZA AHMAD REDZUAN2 MOHD FAIZAL ABU BAKAR3, NOR MUHAMMAD MAHADI2,
ABDUL MUNIR ABDUL MURAD2, ROSLI MD. ILLIAS4,
DORIS QUAY HUAI XIA1, IZWAN BHARUDIN2, FARAH DIBA ABU
BAKAR2 & SHAZILAH KAMARUDDIN2,*
1Department of Applied
Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
2Department of Biological
Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
3Malaysia Genome &
Vaccine Institute, Jalan Bangi Lama, 43000 Kajang, Selangor, Malaysia
4Department of
Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia,
81310 Skudai, Johor, Malaysia
Diserahkan:
20 Februari 2024/Diterima:
17 Julai 2024
Abstract
Proteases are one of the most
significant classes of enzymes, holding immense physiological relevance and
extensive industrial applications. The genome of Glaciozyma antarctica was fully sequenced, showing 7,857
open reading frames that offer an intriguing opportunity to investigate its
proteolytic repertoire. This study aims to unveil the protease landscape of G.
antarctica, a psychrophilic yeast that produces cold-active enzymes that
offer remarkable benefits, particularly in the food and pharmaceutical industries.
In this work, we performed a comprehensive analysis to identify the diverse
families of proteases encoded within the G. antarctica genome and
compare them with proteases from other mesophilic and thermophilic fungi in the
MEROPS database. The sequence similarity searches resulted in the
identification of 195 open reading frames predicted to encode for proteases in G.
antarctica with a high number of intracellular proteases. These findings
suggest an evolved system for protein quality control and turnover, essential
for cell viability and adaptation to environmental stressors. The MEROPS
classification analysis showed an abundance of metalloproteases, constituting
38% of the total protease genes, a proportion surpassing that found in other
yeast and fungal genomes studied. This reflects the vital role of
metalloproteases in the cold adaptation of microbes in the Antarctic region. This unique profile not only sheds light on the adaptive mechanisms of
psychrophilic organisms but also presents a rich reservoir of potential
cold-active proteases for various applications. The findings of this study
provide a foundation for targeted enzyme discovery and engineering, unlocking
new frontiers in industrial biotechnology and extremophile biology.
Keywords: Cold
active enzyme; cold adaptation; comparative genomics; peptidase; polar microbiology
Abstrak
Protease adalah salah satu kelas enzim penting yang mempunyai peranan fisiologi yang besar dan aplikasi industri yang luas. Genom G. antarctica telah dijujuk sepenuhnya dan memaparkan sejumlah 7,857 rangka bacaan terbuka yang membuka peluang menarik untuk kajian himpunan enzim proteolitiknya. Kajian ini mendedahkan landskap protease Glaciozyma antarctica, yis psikofilik yang menghasilkan enzim aktif sejuk yang menawarkan manfaat yang luas terutamanya dalam industri makanan dan farmaseutik. Dalam kajian ini, satu analisis komprehensif telah dijalankan untuk mengenal pasti kepelbagaian keluarga protease
yang dikodkan dalam genom G. antarctica dan melakukan analisis perbandingan dengan protease daripada kulat mesofil dan termofil dalam pangkalan data
MEROPS. Analisis carian persamaan jujukan molekul telah mengenal pasti sebanyak 195 bingkai bacaan terbuka yang diramalkan sebagai gen mengekod protease dalam genom G. antarctica dengan bilangan gen mengekod protease intrasel adalah yang tertinggi. Penemuan ini mencadangkan satu evolusi dalam sistem kawalan kualiti dan kadar pusing ganti protein yang penting untuk kelangsungan hidup G. antarcticadan penyesuaian kepada tekanan alam sekitar. Analisis pengelasan MEROPS G. antarctica menunjukkan yis ini mempunyai bilangan gen mengekod metaloprotease yang tinggi iaitu kira-kira 38% daripada gen mengekod protease keseluruhan di dalam genom. Peratusan ini adalah yang tertinggi jika dibandingkan dengan genom yis dan kulat yang telah dikaji. Ini mencerminkan peranan penting metaloprotease dalam penyesuaian mikrob sejuk di rantau Antartika. Profil protease yang unik ini bukan sahaja memberikan gambaran mekanisme penyesuaian organisme psikofil tetapi juga menyediakan reservoir genom yang kaya dengan protease aktif sejuk yang berpotensi untuk aplikasi yang pelbagai. Hasil kajian ini menyediakan asas untuk penemuan dan kejuruteraan enzim secara bersasar serta penerokaan sempadan ilmu baharu dalam bioteknologi industri dan biologi ekstremofil.
Kata kunci: Adaptasi sejuk; enzim aktif sejuk; genom perbandingan; mikrobiologi kutub; peptidase
RUJUKAN
Abada,
E.A. 2019. Application of microbial enzymes in the dairy industry. In Enzymes
in Food Biotechnology, edited by Kuddus, M.
Massachusetts: Academic Press. pp. 61-72.
Adekoya,
A.O. & Sylte, I. 2009. The thermolysin family (M4) of enzymes: Therapeutic and
biotechnological potential. Chemical Biology & Drug Design 73: 7-16.
Alcaíno, J., Cifuentes, V. & Baeza, M. 2015.
Physiological adaptations of yeasts living in cold environments and their
potential applications. World Journal of Microbiology and Biotechnology 31(10): 1467-1473.
Baeza, M., Alcaíno, J., Cifuentes, V., Turchetti, B. &
Buzzini, P. 2017. Cold-active enzymes from cold-adapted yeasts. In Biotechnology
of Yeasts and Filamentous Fungi, edited by Sibirny, A. Springer, Champ. pp.
297-324.
Bharudin, I., Abu Bakar, M.F., Hashim, N.H.F., Mat Isa, M.N.,
Alias, H., Firdaus-Raih, M., Md Illias, R., Najimudin, N., Mahadi, N.M., Abu
Bakar, F.D. & Abdul Murad, A.M. 2018. Unravelling the adaptation strategies
employed by Glaciozyma antarctica PI12 on Antarctic sea ice. Marine
Environmental Research 137: 169-176.
Białkowska,
A., Gromek, E., Florczak, T., Krysiak, J., Szulczewska,
K. & Turkiewicz, M. 2016. Extremophilic proteases: Developments of their
special functions, potential resources and biotechnological applications. In Grand
Challenges in Biology and Biotechnology, edited by Rampelotto,
P.H. Switzerland: Springer International Publishing. pp. 399-444.
Burgos,
R., Weber, M., Martinez, S., Lluch-Senar, M. & Serrano, L. 2020. Protein
quality control and regulated proteolysis in the genome-reduced organism Mycoplasma
pneumoniae. Molecular Systems Biology 16: e9530.
Cheng,
J.H., Wang, Y., Zhang, X.Y., Sun, M.L., Zhang, X., Song, X.Y., Zhang, Y.Z.,
Zhang, Y. & Chen X.L. 2021. Characterization and
diversity analysis of the extracellular proteases of thermophilic Anoxybacillus caldiproteolyticus 1A02591 from deep-sea hydrothermal vent sediment. Frontiers in
Microbiology 12: 643508.
Choi,
J.M., Han, S.S. & Kim, H.S. 2015. Industrial applications of enzyme
biocatalysis: Current status and future aspect. Biotechnology Advances 33:
1443-1454.
Choudhuri, S. 2014. Sequence alignment and similarity
searching in genomic databases. In Bioinformatics for Beginners: Genes,
Genomes, Molecular Evolution, Databases and Analytical Tools, edited by
Choudhuri, S. Massachusetts: Academic Press. pp. 133-155.
Christensen, L.F., García-Béjar, B., Bang-Berthelsen, C.H.
& Hansen, E.B. 2022. Extracellular microbial proteases with specificity for
plant proteins in food fermentation. International Journal of Food
Microbiology 381: 109889.
Ding, F. & Dokholyan, N.V.
2006 Correction: Emergence of protein fold families through rational
design. PLOS Computational Biology 2(10): e149.
Dube, S., Singh, L. & Alam, S.I. 2001. Proteolytic
anaerobic bacteria from lake sediments of Antarctica. Enzyme and Microbial
Technology 28(1): 114-121.
Feller,
G. 2013. Psychrophilic enzymes: From folding to function and biotechnology. Scientifica 2013: 512840.
Firdaus-Raih,
M., Hashim, N.H.F., Bharudin, I., Bakar, M.F.A., Huang, K.K., Alias, H., Lee,
B.K.B., Isa, M.N.M., Mat-Sharani, S., Sulaiman, S., Tay, L.J., Zolkefli, R., Noor, Y.M., Law, D.S.N., Rahman, S.H.A.,
Md-Illias, R., Bakar, F.D.A., Najimudin, N., Murad,
A.M.A. & Mahadi, N.M. 2018. The Glaciozyma antarctica genome reveals an array of systems
that provide sustained responses towards temperature variations in a
persistently cold habitat. PLoS ONE 13(1): e0189947.
Furhan, J.
2020. Adaptation, production, and biotechnological potential of cold-adapted
proteases from psychrophiles and psychrotrophs:
Recent overview. Journal of Genetic Engineering and Biotechnology 18(1):
36.
Geisselar, D.
& Horwath, R.W. 2008. Regulation of extracellular protease activity in soil
in response to different sources and concentrations of nitrogen and carbon. Soil
Biology & Biochemistry 40: 3040-3048.
Geisseler,
D., Horwath R.W., Joergensen,
R.G. & Ludwig, B. 2010. Pathways of nitrogen utilization by soil
microorganisms- A review. Soil Biology & Biochemistry 40: 2058-2067.
Gimenes,
N.C., Silveira, E. & Tambourgi, E.B. 2021. An
overview of proteases: Production, downstream processes and industrial
applications. Separation and Purification Reviews 50(3): 223-243.
Gurumallesh,
P., Alagu, K., Ramakrishnan, B. & Muthusamy, S. 2019. A systematic
reconsideration on proteases. International Journal of Biological
Macromolecules 128: 254-267.
Horton,
P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J. &
Nakai, K. 2007. WoLF PSORT: Protein localization
predictor. Nucleic Acids Research 35: 585-587.
Joseph,
B., Kumar, V. & Ramteke, P.W. 2019. Psychrophilic enzymes: Potential
biocatalysts for food processing. In Enzymes in Food Biotechnology,
edited by Kuddus, M. Amsterdam: Elsevier. pp.
817-825.
Kall,
L., Krogh, A. & Sonnhammer, E.L. 2007. Advantages
of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research 35:
429-432.
Kamaruddin, S., Redzuan, R.A., Minor, N., Mohd, W., Wan, K.,
Tab, M., Jaafar, N.R., Rodzli, N.A., Jonet, M.A., Bharudin, I., Yusof, N.A.,
Quay, D. & Xia, H. 2022. Biochemical characterisation and structure
determination of a novel cold-active proline iminopeptidase from the
psychrophilic yeast, Glaciozyma antarctica PI12. Catalysts 12:
722.
Kapp, K., Schrempf, S., Lemberg, M.K. & Dobberstein, B.
2009. Post‑targeting functions of signal peptides. In Protein
Transport into the Endoplasmic Reticulum, edited by Zimmermann, R. Boca
Raton: CRC Press. pp. 1-16.
Katoh,
K. & Standley, D.M. 2013. MAFFT multiple sequence
alignment software version 7: Improvements in performance and usability. Molecular
Biology and Evolution 30(4): 772-780.
Kuddus, M.
2018. Cold-active enzymes in food biotechnology: An updated mini review. Journal
of Applied Biology & Biotechnology 6(3): 58-63.
Kumar,
S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular
evolutionary genetics analysis across computing platforms. Molecular Biology
and Evolution 35(6): 1547-1549.
Liu,
X. & Kokare, C. 2017. Microbial enzymes of use in
industry. In Biotechnology of Microbial Enzymes Production, Biocatalysis and
Industrial Applications, edited by Brahmachari, G. Amsterdam: Elsevier. pp.
267-298.
Martorell,
M.M., Ruberto, L.A.M., de Figueroa, L.I.C. & Mac Cormack, W.P. 2019.
Antarctic yeasts as a source of enzymes for biotechnological applications. In Fungi
of Antarctica, edited by Rosa, L. Switzerland: Springer Cham. pp. 285-304.
Matsui,
M., Kawamata, A., Kosugi, M. & Imura, S. 2017. Diversity of proteolytic
microbes isolated from Antarctic freshwater lakes and characteristics of their
cold-active proteases. Polar Science 13: 82-90.
Mohamad Nor, N., Hashim, N.H.F., Quay, D.H.X., Mahadi,
N.M., Illias, R.M., Abu Bakar, F.D. & Murad, A.M.A. 2020. Functional and
structural analyses of an expansin-like protein from the antarctic yeast Glaciozyma
antarctica PI12 reveal strategies of nutrient scavenging in the sea ice
environment. International Journal of Biological Macromolecules 144:
231-241.
Naveed,
M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z. & Amjad, F. 2021.
Protease - A versatile and ecofriendly biocatalyst with multi-industrial
applications: An updated review. Catalysis Letters 151(2): 307-323.
Parvizpour,
S., Hussin, N., Shamsir, M.S. & Razmara, J. 2021. Psychrophilic enzymes: Structural
adaptation, pharmaceutical and industrial applications. Applied Microbiology
and Biotechnology 105(3): 899-907.
Pearson, W.R. 2013. An introduction to sequence similarity
(“homology”) searching. Current Protocols in Bioinformatics doi: 10.1002/0471250953.bi0301s42
Petersen,
T.N., Brunak, S., Von Heijne, G. & Nielsen, H. 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature
Methods 8(10): 785-786.
Quast,
C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T.,
Yarza, P., Peplies, J. & Glockner, F.O. 2013. The
SILVA ribosomal RNA gene database project: Improved data processing and
web-based tools. Nucleic Acids Research 41: 590-596.
Rawlings,
N.D., Waller, M., Barrett, A.J. & Bateman, A. 2014. MEROPS: The database of
proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 42: 503-509.
Sabath,
N., Ferrada, E., Barve, A. & Wagner, A. 2013. Growth temperature and genome
size in bacteria are negatively correlated, suggesting genomic streamlining
during thermal adaptation. Genome Biology and Evolution 5(5): 966-977.
Santos, A.F., Pires, F., Jesus, H.E., Santos, A.L.S.,
Peixoto, R., Rosado, A.S., D’avila-Levy, C.M. & Branquinha, M.H. 2015.
Detection of proteases from Sporosarcina aquimarina and Algoriphagus
antarcticus isolated from Antarctic soil. Anais da Academia Brasileira
de Ciencias 87(1): 109-119.
Sarmiento,
F., Peralta, R. & Blamey, J.M. 2015. Cold and hot extremozymes: Industrial
relevance and current trends. Frontiers in Bioengineering and Biotechnology 3: 148.
Schimel,
J.P. & Bennett, J. 2004. Nitrogen mineralization: Challenges of a changing
paradigm. Ecology 85(3): 591-602.
Sommerfield,
A.G. & Darwin, A.J. 2022. Bacterial carboxyl-terminal processing proteases
play critical roles in the cell envelope and beyond. Journal of Bacteriology 204: e00628-21.
Song,
P., Zhang, X., Wang, S., Xu, W., Wang, F., Fu, R. & Wei, F. 2023. Microbial
proteases and their applications. Frontier Microbiology 14:
1236368.
Stecher,
G., Tamura, K. & Kumar, S. 2020. Molecular Evolutionary Genetics Analysis
(MEGA) for macOS. Molecular Biology and Evolution 37(4): 1237-1239.
Tavano,
O.L., Berenguer-Murcia, A., Secundo, F. & Fernandez-Lafuente, R. 2018.
Biotechnological applications of proteases in food technology. Comprehensive
Reviews in Food Science and Food Safety 17(2): 412-436.
Ugalde,
A.P., Ordóñez, G.R., Quirós, P.M., Puente, X.S. & Lopez-Otín,
C. 2010. Metalloproteases and the Degradome. Methods in Molecular Biology 622:
3-29.
Vazquez,
S.C., Coria, S.H. & Mac, W.P. 2004. Extracellular proteases from eight psychrotolerant antarctic strains. Microbiological Research 159: 157-166.
Wu,
J.W. & Chen, X.L. 2011. Extracellular metalloproteases from bacteria.
Applied Microbiology and Biotechnology 92: 253-262.
Wu, Z., Yang, K.K., Liszka, M.J., Lee, A., Batzilla,
A., Wernick, D., Weiner, D.P. & Arnold, F.H. 2020. Signal peptides
generated by attention-based neural networks. ACS Synthetic Biology 9(8): 2154-2161.
Yang,
Z., Huang, Z., Wu, Q., Tang, X. & Huang, Z. 2023. Cold-adapted proteases:
An efficient and energy-saving biocatalyst. International Journal of
Molecular Sciences 24: 8532.
Yin,
Q., He, K., Collins, G., De Vrieze, J. & Wu, G. 2024. Microbial strategies
driving low concentration substrate degradation for sustainable remediation
solutions. npj Clean Water 7(1): 52.
Yusof,
N.A., Hashim, N.H.F. & Bharudin, I. 2021. Cold adaptation strategies and
the potential of psychrophilic enzymes from the antarctic yeast, Glaciozyma antarctica PI12. Journal of Fungi 7(7): 528.
Zhou,
M-Y., Wang, G-L., Li, D., Zhao, D-L., Qin, Q-L., Chen, X-L., Chen, B., Zhou,
B-C., Zhang, X.Y. & Zhang, Y.Z. 2013. Diversity of both the cultivable
protease-producing bacteria and bacterial extracellular proteases in the
Coastal Sediments of King George Island. Antarctica 8(11): e79668.
*Pengarang untuk surat-menyurat; email: shazilah@ukm.edu.my
|