Sains Malaysiana 53(9)(2024): 3031-3044

http://doi.org/10.17576/jsm-2024-5309-10

 

Exploring the Protease Diversity of Psychrophilic Yeast, Glaciozyma antarctica through Genome Mining Analysis

(Meneroka Kepelbagaian Protease Yis Psikrofili, Glaciozyma antarctica melalui Analisis Perlombongan Genom)

 

NORFARHAN MOHD-ASSAAD1, ROHAIZA AHMAD REDZUAN2 MOHD FAIZAL ABU BAKAR3, NOR MUHAMMAD MAHADI2, ABDUL MUNIR ABDUL MURAD2, ROSLI MD. ILLIAS4, DORIS QUAY HUAI XIA1, IZWAN BHARUDIN2, FARAH DIBA ABU BAKAR2 & SHAZILAH KAMARUDDIN2,*

 

1Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Malaysia Genome & Vaccine Institute, Jalan Bangi Lama, 43000 Kajang, Selangor, Malaysia

4Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

Diserahkan: 20 Februari 2024/Diterima: 17 Julai 2024

 

Abstract

Proteases are one of the most significant classes of enzymes, holding immense physiological relevance and extensive industrial applications. The genome of Glaciozyma antarctica was fully sequenced, showing 7,857 open reading frames that offer an intriguing opportunity to investigate its proteolytic repertoire. This study aims to unveil the protease landscape of G. antarctica, a psychrophilic yeast that produces cold-active enzymes that offer remarkable benefits, particularly in the food and pharmaceutical industries. In this work, we performed a comprehensive analysis to identify the diverse families of proteases encoded within the G. antarctica genome and compare them with proteases from other mesophilic and thermophilic fungi in the MEROPS database. The sequence similarity searches resulted in the identification of 195 open reading frames predicted to encode for proteases in G. antarctica with a high number of intracellular proteases. These findings suggest an evolved system for protein quality control and turnover, essential for cell viability and adaptation to environmental stressors. The MEROPS classification analysis showed an abundance of metalloproteases, constituting 38% of the total protease genes, a proportion surpassing that found in other yeast and fungal genomes studied. This reflects the vital role of metalloproteases in the cold adaptation of microbes in the Antarctic region. This unique profile not only sheds light on the adaptive mechanisms of psychrophilic organisms but also presents a rich reservoir of potential cold-active proteases for various applications. The findings of this study provide a foundation for targeted enzyme discovery and engineering, unlocking new frontiers in industrial biotechnology and extremophile biology.

 

Keywords: Cold active enzyme; cold adaptation; comparative genomics; peptidase; polar microbiology

 

Abstrak

Protease adalah salah satu kelas enzim penting yang mempunyai peranan fisiologi yang besar dan aplikasi industri yang luas. Genom G. antarctica telah dijujuk sepenuhnya dan memaparkan sejumlah 7,857 rangka bacaan terbuka yang membuka peluang menarik untuk kajian himpunan enzim proteolitiknya. Kajian ini mendedahkan landskap protease Glaciozyma antarctica, yis psikofilik yang menghasilkan enzim aktif sejuk yang menawarkan manfaat yang luas terutamanya dalam industri makanan dan farmaseutik. Dalam kajian ini, satu analisis komprehensif telah dijalankan untuk mengenal pasti kepelbagaian keluarga protease yang dikodkan dalam genom G. antarctica dan melakukan analisis perbandingan dengan protease daripada kulat mesofil dan termofil dalam pangkalan data MEROPS. Analisis carian persamaan jujukan molekul telah mengenal pasti sebanyak 195 bingkai bacaan terbuka yang diramalkan sebagai gen mengekod protease dalam genom G. antarctica dengan bilangan gen mengekod protease intrasel adalah yang tertinggi. Penemuan ini mencadangkan satu evolusi dalam sistem kawalan kualiti dan kadar pusing ganti protein yang penting untuk kelangsungan hidup G. antarcticadan penyesuaian kepada tekanan alam sekitar. Analisis pengelasan MEROPS G. antarctica menunjukkan yis ini mempunyai bilangan gen mengekod metaloprotease yang tinggi iaitu kira-kira 38% daripada gen mengekod protease keseluruhan di dalam genom. Peratusan ini adalah yang tertinggi jika dibandingkan dengan genom yis dan kulat yang telah dikaji. Ini mencerminkan peranan penting metaloprotease dalam penyesuaian mikrob sejuk di rantau Antartika. Profil protease yang unik ini bukan sahaja memberikan gambaran mekanisme penyesuaian organisme psikofil tetapi juga menyediakan reservoir genom yang kaya dengan protease aktif sejuk yang berpotensi untuk aplikasi yang pelbagai. Hasil kajian ini menyediakan asas untuk penemuan dan kejuruteraan enzim secara bersasar serta penerokaan sempadan ilmu baharu dalam bioteknologi industri dan biologi ekstremofil.

 

Kata kunci: Adaptasi sejuk; enzim aktif sejuk; genom perbandingan; mikrobiologi kutub; peptidase

 

RUJUKAN

Abada, E.A. 2019. Application of microbial enzymes in the dairy industry. In Enzymes in Food Biotechnology, edited by Kuddus, M. Massachusetts: Academic Press. pp. 61-72.

Adekoya, A.O. & Sylte, I. 2009.  The thermolysin family (M4) of enzymes: Therapeutic and biotechnological potential. Chemical Biology & Drug Design 73: 7-16.

Alcaíno, J., Cifuentes, V. & Baeza, M. 2015. Physiological adaptations of yeasts living in cold environments and their potential applications. World Journal of Microbiology and Biotechnology 31(10): 1467-1473.

Baeza, M., Alcaíno, J., Cifuentes, V., Turchetti, B. & Buzzini, P. 2017. Cold-active enzymes from cold-adapted yeasts. In Biotechnology of Yeasts and Filamentous Fungi, edited by Sibirny, A. Springer, Champ. pp. 297-324.

Bharudin, I., Abu Bakar, M.F., Hashim, N.H.F., Mat Isa, M.N., Alias, H., Firdaus-Raih, M., Md Illias, R., Najimudin, N., Mahadi, N.M., Abu Bakar, F.D. & Abdul Murad, A.M. 2018. Unravelling the adaptation strategies employed by Glaciozyma antarctica PI12 on Antarctic sea ice. Marine Environmental Research 137: 169-176.

Białkowska, A., Gromek, E., Florczak, T., Krysiak, J., Szulczewska, K. & Turkiewicz, M. 2016. Extremophilic proteases: Developments of their special functions, potential resources and biotechnological applications. In Grand Challenges in Biology and Biotechnology, edited by Rampelotto, P.H. Switzerland: Springer International Publishing. pp. 399-444.

Burgos, R., Weber, M., Martinez, S., Lluch-Senar, M. & Serrano, L. 2020. Protein quality control and regulated proteolysis in the genome-reduced organism Mycoplasma pneumoniae. Molecular Systems Biology 16: e9530.

Cheng, J.H., Wang, Y., Zhang, X.Y., Sun, M.L., Zhang, X., Song, X.Y., Zhang, Y.Z., Zhang, Y. & Chen X.L. 2021. Characterization and diversity analysis of the extracellular proteases of thermophilic Anoxybacillus caldiproteolyticus 1A02591 from deep-sea hydrothermal vent sediment. Frontiers in Microbiology 12: 643508.

Choi, J.M., Han, S.S. & Kim, H.S. 2015. Industrial applications of enzyme biocatalysis: Current status and future aspect. Biotechnology Advances 33: 1443-1454.

Choudhuri, S. 2014. Sequence alignment and similarity searching in genomic databases. In Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools, edited by Choudhuri, S. Massachusetts: Academic Press. pp. 133-155.

Christensen, L.F., García-Béjar, B., Bang-Berthelsen, C.H. & Hansen, E.B. 2022. Extracellular microbial proteases with specificity for plant proteins in food fermentation. International Journal of Food Microbiology 381: 109889.

Ding, F. & Dokholyan, N.V. 2006 Correction: Emergence of protein fold families through rational design. PLOS Computational Biology 2(10): e149.

Dube, S., Singh, L. & Alam, S.I. 2001. Proteolytic anaerobic bacteria from lake sediments of Antarctica. Enzyme and Microbial Technology 28(1): 114-121.

Feller, G. 2013. Psychrophilic enzymes: From folding to function and biotechnology. Scientifica 2013: 512840.

Firdaus-Raih, M., Hashim, N.H.F., Bharudin, I., Bakar, M.F.A., Huang, K.K., Alias, H., Lee, B.K.B., Isa, M.N.M., Mat-Sharani, S., Sulaiman, S., Tay, L.J., Zolkefli, R., Noor, Y.M., Law, D.S.N., Rahman, S.H.A., Md-Illias, R., Bakar, F.D.A., Najimudin, N., Murad, A.M.A. & Mahadi, N.M. 2018. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS ONE 13(1): e0189947.

Furhan, J. 2020. Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs: Recent overview. Journal of Genetic Engineering and Biotechnology 18(1): 36.

Geisselar, D. & Horwath, R.W. 2008. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biology & Biochemistry 40: 3040-3048.

Geisseler, D., Horwath R.W., Joergensen, R.G. & Ludwig, B. 2010. Pathways of nitrogen utilization by soil microorganisms- A review. Soil Biology & Biochemistry 40: 2058-2067.

Gimenes, N.C., Silveira, E. & Tambourgi, E.B. 2021. An overview of proteases: Production, downstream processes and industrial applications. Separation and Purification Reviews 50(3): 223-243.

Gurumallesh, P., Alagu, K., Ramakrishnan, B. & Muthusamy, S. 2019. A systematic reconsideration on proteases. International Journal of Biological Macromolecules 128: 254-267.

Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J. & Nakai, K. 2007. WoLF PSORT: Protein localization predictor. Nucleic Acids Research 35: 585-587.

Joseph, B., Kumar, V. & Ramteke, P.W. 2019. Psychrophilic enzymes: Potential biocatalysts for food processing. In Enzymes in Food Biotechnology, edited by Kuddus, M. Amsterdam: Elsevier. pp. 817-825.

Kall, L., Krogh, A. & Sonnhammer, E.L. 2007. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research 35: 429-432.

Kamaruddin, S., Redzuan, R.A., Minor, N., Mohd, W., Wan, K., Tab, M., Jaafar, N.R., Rodzli, N.A., Jonet, M.A., Bharudin, I., Yusof, N.A., Quay, D. & Xia, H. 2022. Biochemical characterisation and structure determination of a novel cold-active proline iminopeptidase from the psychrophilic yeast, Glaciozyma antarctica PI12. Catalysts 12: 722.

Kapp, K., Schrempf, S., Lemberg, M.K. & Dobberstein, B. 2009. Post‑targeting functions of signal peptides. In Protein Transport into the Endoplasmic Reticulum, edited by Zimmermann, R. Boca Raton: CRC Press. pp. 1-16.

Katoh, K. & Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772-780.

Kuddus, M. 2018. Cold-active enzymes in food biotechnology: An updated mini review. Journal of Applied Biology & Biotechnology 6(3): 58-63.

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547-1549.

Liu, X. & Kokare, C. 2017. Microbial enzymes of use in industry. In Biotechnology of Microbial Enzymes Production, Biocatalysis and Industrial Applications, edited by Brahmachari, G. Amsterdam: Elsevier. pp. 267-298.

Martorell, M.M., Ruberto, L.A.M., de Figueroa, L.I.C. & Mac Cormack, W.P. 2019. Antarctic yeasts as a source of enzymes for biotechnological applications. In Fungi of Antarctica, edited by Rosa, L. Switzerland: Springer Cham. pp. 285-304.

Matsui, M., Kawamata, A., Kosugi, M. & Imura, S. 2017. Diversity of proteolytic microbes isolated from Antarctic freshwater lakes and characteristics of their cold-active proteases. Polar Science 13: 82-90.

Mohamad Nor, N., Hashim, N.H.F., Quay, D.H.X., Mahadi, N.M., Illias, R.M., Abu Bakar, F.D. & Murad, A.M.A. 2020. Functional and structural analyses of an expansin-like protein from the antarctic yeast Glaciozyma antarctica PI12 reveal strategies of nutrient scavenging in the sea ice environment. International Journal of Biological Macromolecules 144: 231-241.

Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z. & Amjad, F. 2021. Protease - A versatile and ecofriendly biocatalyst with multi-industrial applications: An updated review. Catalysis Letters 151(2): 307-323.

Parvizpour, S., Hussin, N., Shamsir, M.S. & Razmara, J. 2021. Psychrophilic enzymes: Structural adaptation, pharmaceutical and industrial applications. Applied Microbiology and Biotechnology 105(3): 899-907.

Pearson, W.R. 2013. An introduction to sequence similarity (“homology”) searching. Current Protocols in Bioinformatics doi: 10.1002/0471250953.bi0301s42

Petersen, T.N., Brunak, S., Von Heijne, G. & Nielsen, H. 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods 8(10): 785-786.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. & Glockner, F.O. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41: 590-596.

Rawlings, N.D., Waller, M., Barrett, A.J. & Bateman, A. 2014. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 42: 503-509.

Sabath, N., Ferrada, E., Barve, A. & Wagner, A. 2013. Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biology and Evolution 5(5): 966-977.

Santos, A.F., Pires, F., Jesus, H.E., Santos, A.L.S., Peixoto, R., Rosado, A.S., D’avila-Levy, C.M. & Branquinha, M.H. 2015. Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil. Anais da Academia Brasileira de Ciencias 87(1): 109-119.

Sarmiento, F., Peralta, R. & Blamey, J.M. 2015. Cold and hot extremozymes: Industrial relevance and current trends. Frontiers in Bioengineering and Biotechnology 3: 148.

Schimel, J.P. & Bennett, J. 2004. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85(3): 591-602.

Sommerfield, A.G. & Darwin, A.J. 2022. Bacterial carboxyl-terminal processing proteases play critical roles in the cell envelope and beyond. Journal of Bacteriology 204: e00628-21.

Song, P., Zhang, X., Wang, S., Xu, W., Wang, F., Fu, R. & Wei, F. 2023. Microbial proteases and their applications. Frontier Microbiology 14: 1236368.

Stecher, G., Tamura, K. & Kumar, S. 2020. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution 37(4): 1237-1239.

Tavano, O.L., Berenguer-Murcia, A., Secundo, F. & Fernandez-Lafuente, R. 2018. Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety 17(2): 412-436.

Ugalde, A.P., Ordóñez, G.R., Quirós, P.M., Puente, X.S. & Lopez-Otín, C. 2010. Metalloproteases and the Degradome. Methods in Molecular Biology 622: 3-29.

Vazquez, S.C., Coria, S.H. & Mac, W.P. 2004. Extracellular proteases from eight psychrotolerant antarctic strains. Microbiological Research 159: 157-166.

Wu, J.W. & Chen, X.L. 2011. Extracellular metalloproteases from bacteria. Applied Microbiology and Biotechnology 92: 253-262.

Wu, Z., Yang, K.K., Liszka, M.J., Lee, A., Batzilla, A., Wernick, D., Weiner, D.P. & Arnold, F.H. 2020. Signal peptides generated by attention-based neural networks. ACS Synthetic Biology 9(8): 2154-2161.

Yang, Z., Huang, Z., Wu, Q., Tang, X. & Huang, Z. 2023. Cold-adapted proteases: An efficient and energy-saving biocatalyst. International Journal of Molecular Sciences 24: 8532.

Yin, Q., He, K., Collins, G., De Vrieze, J. & Wu, G. 2024. Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions. npj Clean Water 7(1): 52.

Yusof, N.A., Hashim, N.H.F. & Bharudin, I. 2021. Cold adaptation strategies and the potential of psychrophilic enzymes from the antarctic yeast, Glaciozyma antarctica PI12. Journal of Fungi 7(7): 528.

Zhou, M-Y., Wang, G-L., Li, D., Zhao, D-L., Qin, Q-L., Chen, X-L., Chen, B., Zhou, B-C., Zhang, X.Y. & Zhang, Y.Z. 2013. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the Coastal Sediments of King George Island. Antarctica 8(11): e79668.

 

*Pengarang untuk surat-menyurat; email: shazilah@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya